2022-2023 Senior Mathematical Olympiad

Round Two Examination (Grades 9,10 and 11) - 11:00am

SECTION A

For each question, determine the letter corresponding to the correct or best response; along with the question number, indicate this letter by shading it on the answer sheet

1. What is the smallest four-digit positive integer which has four different digits?
(A) 1032
(B) 2012
(C) 1021
(D) 1234
(E) 1023
2. In the following expression each \square is to be replaced with either + or - in such a way that the result of the calculation is 100 .

1234567 89

Let p be the number of + signs used and m the number of - signs used. What is the value of $p-m$?
(A) -3
(B) -1
(C) 0
(D) 1
(E) 3
3. How many two-digit numbers have remainder 1 when divided by 3 and remainder 2 when divided by 4 ?
(A) 8
(B) 7
(C) 6
(D) 5
(E) 4
4. Which one of the following is equal to

$$
\sqrt{9^{16 x^{2}}}
$$

for all values of x ?
(A) $3^{4 x}$
(B) $3^{4 x^{2}}$
(C) $3^{8 x^{2}}$
(D) $9^{4 x}$
(E) $9^{8 x^{2}}$
5. After playing 500 games, Sarah's success rate at Solitaire is 49%. If Sarah wins every game from now on, how many more games does she need to play in order that her success rate increases to 50% ?
(A) 1
(B) 2
(C) 5
(D) 10
(E) 50
6. $P Q R S$ is a quadrilateral inscribed in a circle of which $P R$ is a diameter. The lengths of $P Q, Q R$ and $R S$ are 60,25 and 52 respectively.

What is the length of $S P$?
(A) $21 \frac{2}{3}$
(B) $28 \frac{11}{13}$
(C) 33
(D) 36
(E) 39
7. Peter wrote a list of all the prime numbers that could be produced by changing one digit of the number 200. How many of the numbers in Peter's list are prime?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
8. Two externally tangent circles (Circles touching each other) with centers at points A and B have radii of lengths 5 and 3 , respectively. A line externally tangent to both circles intersects ray $A B$ at point C. What is the length of $B C$?
(A) 4
(B) 4.8
(C) 10.2
(D) 12
(E) 14.4
9. The parallel sides of a trapezium have lengths $2 x$ and $2 y$ respectively. The diagonals are equal in length, and one diagonal makes an angle θ with the parallel sides as shown.

What is the length of each diagonal?
(A) $x+y$
(B) $\frac{x+y}{\sin \theta}$
(C) $(x+y) \cos \theta$
(D) $(x+y) \tan \theta$
(E) $\frac{x+y}{\cos \theta}$
10. The interior angles of a triangle are

$$
(5 x+3 y)^{\circ},(3 x+20)^{\circ} \text { and }(10 y+30)^{\circ}
$$

where x and y are positive integers. What is the value of $x+y$?
(A) 15
(B) 14
(C) 13
(D) 12
(E) 11

SECTION B

For each question, provide a complete solution by showing all your workings.

1. The diagram shows triangle $A B C$, in which $\angle A B C=72^{\circ}$ and $\angle C A B=84^{\circ}$. The point E lies on $A B$ so that $E C$ bisects $\angle B C A$. The point F lies on $C A$ extended. The point D lies on $C B$ extended so that $D A$ bisects $\angle B A F$.

Prove that $A D=C E$.
2. Let $P(n)$ and $S(n)$ denote the product and the sum, respectively, of the digits of the integer n. For example,

$$
P(23)=6 \text { and } S(23)=5 .
$$

Suppose N is a two-digit number such that $N=P(N)+S(N)$. Determine the units digit of N ?
3. The letters a, b, c, d, e and f and represent single digits and each letter represents a different digit. They satisfy the following equations:

$$
a+b=d, \quad b+c=e \quad \text { and } \quad d+e=f
$$

One solution for the ordered set (a, b, c, d, e, f) is $(2,1,4,3,5,8)$. Find all the other solutions.
4. Two overlapping triangles $P O R$ and $Q O T$ are such that points P, Q, R and T lie on the arc of a semicircle of centre O and diameter $P Q$, as shown in the diagram.

Lines $Q T$ and $P R$ intersect at the point S. Angle TOP is $3 x^{\circ}$ and angle $R O Q$ is $5 x^{\circ}$.
In terms of x, what is the measure of $\angle R S Q$?
5. In a sequence, every term after the second is equal to the sum of the previous two terms. Also, every term is a positive integer. The eighth term in the sequence is 400 . What is the maximum value of the third term in the sequence.

