A Realiztic Energy Mix including RE And Balancing Climate

PRESENTED BY: Valentine Fagan , MSc(Eng)

September 25, 2012

Background

Over 95% of Jamaica's electricity produced with fuel oil

- Oil accounts for the greatest portion of electricity cost.
- Volatile fuel market continuous fluctuation in prices
- High energy price is a barrier to economic and social well being
- Significant investment and time needed for fuel diversification projects.
- It is important that all stakeholders work together to reduce the cost of energy through the diversification from expensive fuel oil into a sustainable energy mix including ,renewables and other alternative fuel choices.
- Firm decision are needed on way forward to achieve diversification.

The Existing System

Electric Sector a Major Fuel User

Unsustainable Heavy Dependence on Imported Fuel

Over 95% of electricity is produced by Imported fuel oil •Only 5% produced by Renewable Source

Majority Contribution from Aging Oil Dependent Units:

	5414/	07		Avg. Heat Rate
	IVIVV	70	Average Age	(KJ/KWN)
Oil-Fired Stm	292	34%	40	13000
LS Diesel	40	5%	27	9000
Oil-Fired CC	114	13%	9	9000
Oil-Fired GT	158	19%	25	16000
Private Producers	250	29%	15	8600
Total	854			

Installed Capacity (Firm) – 809 MW

- ■Peak Demand 650 MW
- System Losses 23%
- ■System Heat Rate 10,200 kJ/kWh

Production Facilities

Fuel is largest component of Price

			J	PS Perfor	mance Ma	atrix		
	2004	2005	2006	2007	2008	2009	2010	2011
Exchange Rate	61.31	62.35	65.77	68.88	72.54	88.06	87.65	86.03
Fuel Cost/bbl (US\$)	40.24	55.24	67.22	71.89	101.03	70.74	88.6	119.34
Heat Rate (kJ/kWh)	10,805	10,986	10,175	10,627	10,214	10,178	10,187	10,121
Net Generation (GWh)	3,717	3,878	4,046	4,079	4,123	4,214	4,137	4,137
Sales (GWh)	2,976	3,055	3,121	3,131	3,179	3,204	3,187	3,216
Losses(GWh)	742	823	926	947	944	1,010	950	921
Losses %	19.9%	21.2%	22.9%	23.2%	22.9%	23.97%	22.96%	22.30%
Profit(US \$M)	(2.31)	23.19	30.03	(7.48)	6.04	42.22	39.88	34.35
Fuel Cost (US cents/kWh)	8.00	11.64	13.00	15.18	20.63	14.54	18.15	23.82
Energy Cost(US cents/kWh)	8.66	9.49	10.46	9.94	10.46	10.23	11.42	12.05
Tariff (US cents/kWh)	16.66	21.14	23.46	25.12	31.09	24.77	29.57	35.86
Return on Equity(ROE)	0.7%	5.8%	7.1%	-2.1%	1.6%	10.6%	10.1%	9.3%
Return on Assets(ROA)	-0.3%	3.9%	3.9%	-0.9%	0.7%	4.5%	4.1%	3.3%
Return on Capital								
Employed (ROCE)	-0.3%	9.0%	6.1%	-2.8%	0.6%	7.6%	7.4%	6.4%

Distribution of Tariff by Operations Category

		Expenses as a Percentage of Total Tariff								
	2004	2005	2006	2007	2008	2009	2010	2011		
Generation:	64.3%	69.9%	69.3%	74.2%	76.8%	71.3%	72.3%	76.1%		
Fuel	48.0%	55.1%	55.4%	60.4%	66.4%	58.7%	61.4%	66.4%		
IPP Cost	11.7%	9.8%	9.9%	9.5%	6.8%	9.3%	7.6%	7.0%		
Gen.O&M	4.6%	5.0%	4.0%	4.3%	3.6%	3.3%	3.3%	2.7%		
Customer Operations	5.7%	3.0%	5.5%	5.7%	5.1%	5.2%	5.8%	4.9%		
Commercial Services	3.0%	5.1%	2.6%	2.7%	1.2%	1.3%	2.6%	2.3%		
Admin.,										
Finance, Depreciation, Taxes										
etc	27.4%	18.3%	18.4%	18.3%	16.3%	16.9%	15.1%	13.8%		
Total Expense	100.5%	96.4%	95.9%	101.0%	99.4%	94.7%	95.8%	97.0%		
Profit	-0.5%	3.6%	4.1%	-1.0%	0.6%	5.3%	4.2%	3.0%		
Total Tariff	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		

System Energy & Demand Forecast

Generation Expansion Forecast Demand					JPS Budge	t & PLanning	; Forecast D	Demand			
	Net	Net Gen	Load		Peak		Net	Net Gen	Load		Peak
	Generation	Growth	Factor	Net Peak	Growth		Generation	Growth	Factor	Net Peak	Growth
Year	(MWh)	Rate	(%)	(MW)	Rate (%)	Year	(MWh)	Rate	(%)	(MW)	Rate (%)
2009	4,213,983		75%	644		2009	4,213,983		75%	644	
2010	4,137,352	-1.8%	74%	638	-0.95%	2010	4,137,352	-1.8%	74%	638	-0.95%
2011	4,113,322	-0.6%	75%	625	-2.09%	2011	4,113,322	-0.6%	75%	625	-2.09%
2012	4,102,216	-0.3%	73%	636	1.76%	2012	4,102,216	-0.3%	73%	636	1.76%
2013	4,108,780	0.2%	74%	634	-0.27%	2013	4,108,780	0.2%	74%	634	-0.27%
2014	4,190,955	2.0%	74%	647	2.00%	2014	4,164,659	1.4%	75%	635	0.10%
2015	4,316,684	3.0%	74%	666	3.00%	2015	4,227,129	1.5%	75%	646	1.81%
2016	4,446,184	3.0%	74%	686	3.00%	2016	4,290,536	1.5%	74%	656	1.50%
2017	4,624,032	4.0%	74%	714	4.00%	2017	4,354,894	1.5%	75%	666	1.52%
2018	4,808,993	4.0%	74%	742	4.00%	2018	4,420,217	1.5%	75%	676	1.50%
2019	5,001,353	4.0%	74%	772	4.00%	2019	4,486,520	1.5%	75%	686	1.48%
2020	5,201,407	4.0%	74%	803	4.00%	2020	4,553,818	1.5%	74%	697	1.60%
2021	5,409,463	4.0%	74%	835	4.00%	2021	4,622,126	1.5%	73%	725	4.00%

Key Challenges to Economic and Reliable Supply

- High Dependency on expensive Imported Oil
 - Fuel oil prices have increased three fold from 2004-2011(US\$40 to -\$119/bbl)
 - 95% of production is from Fuel Oil
 - Fuel accounts for over 60% of total cost of electricity
- Aging Energy Production Assets
 - Average age of base load plant 40 years
 - Low efficiency of conversion of high cost oil
 - Net gen. grew by 11.3% and Sales grew by only 8.1% over the period 2004 to 2011; Increasing illegal abstraction.
- Currently no feasible base load fuel available in sufficient quantity in Jamaica
- Large investment capital required to install new plants
- Long lead time before commercial operations
- Small system size increases unit investment costs and limits options

Fuel and Technology Options for Jamaica

- Liquid Fuels
- Natural Gas
- Coal
- Petroleum coke (Petcoke)
- Renewable Technologies
 - Solar PV
 - Hydro
 - Biomass

Fuel Oil

- Fuel oil readily stored and transported.
- Relatively low infrastructure costs.
- It can be used in flexible generation technologies.
- Volatile fuel market -Most forecasts predict considerable increase in oil prices. Prices impacted by geopolitics
- Currently more than 95% of generation in JPS is produced by fuel oil. This is not a desired situation given the high level of uncertainty of oil prices.
- Oil accounts for the greatest portion of Jamaica electricity cost.

Global spot natural gas and crude oil prices with average monthly LNG prices in Japan

Natural Gas

- World natural gas reserves are becoming abundant.
- US LNG import facilities are being converted to export terminals and facilities could be available by 2015
- Driven mostly by long-term contracts changing market boosting short-term sales/contracts
- Costs of liquefying, transporting & regasifying LNG and local gas delivery infrastructure have to be considered.
- Jamaica will have to invest in gas delivery infrastructure

Natural Gas

Due to economic, environmental and technological changes, natural gas has become the fuel of choice for power generation.

- Natural gas is a clean burning energy source emits lower levels of potentially harmful byproducts
- The shift from coal to natural gas for power generation is expected to continue, and will influence prices
- Viable sources of NG includes: Trinidad, Qatar, USA, Nigeria
- Future Sources: Colombia, Venezuela

Since 2000, U.S. shale gas production has increased 17-fold and now comprises about 30 percent of total U.S. dry production

annual shale gas production (dry) trillion cubic feet

Sources: Lippman Consulting, Inc. gross withdrawal estimates as of November 2011 and converted to dry production estimates with EIA-calculated average gross-to-dry shrinkage factors by state and/or shale play. Note: 2011 is annual rate for first 11 months.

Gas Supply & Infrastructure

Gas supply and infrastructure key components to success of project:

- LNG supply procurement and Infrastructure developments
- LNG vessel / LNG terminal / pipeline

Coal

- Coal is abundant and widely used in power generation
- Coal presents serious environment challenges
- Jamaica is in excellent proximity to reliable coal supplies from major suppliers in Colombia, Venezuela and the USA.
- Good supply of suitable ships in Caribbean pool to handle the requirements of a new coal plant.
- Compared to most fuels, price outlook for coal tends to be stable.

 Price determination includes many variables: expectations by the buyer, seller and mine production/inventory level, delivery infrastructure

Origin	Nautical Miles	Transit Time @ 13.5 knots
Colombia Venezuela Mobile New Orleans Durban Richards Bay Indonesia	438 579 1115 1155 7049 7133 10464	1 day8 hrs1 day18 hrs3 days10 hrs3 days13 hrs21 days18 hrs22 days00hrs32 days07hrs

Coal Price Projections

Source: IEA WEO 2010, Wood Mackenzie, Cambridge Econometrics, European Commission (2009), EIA AEO 2010, Platts International Coal Report.

Coal Prices

Prices on the rise since 2009

Natural gas price projections are lower than in *AEO2011*, consistent with recent market developments

natural gas spot price (Henry Hub) 2010 dollars per million Btu

Sources: EIA, Annual Energy Outlook 2012 Early Release and EIA, Annual Energy Outlook 2011

Angelina LaRose NARUC Winter Meeting, February 5, 2012, Washington, DC

15

Petroleum Coke

- Petroleum Coke(Petcoke) is a by product of delayed coker operations.
- After virtually all light and medium weight hydrocarbons removed from crude oil-a heavy residual oil remains.
- Residue high in carbon content and low in hydrogen
- Remaining solid material is sold as petroleum coke and has high heating value, sulfur content range (0.5-5.5%).

Petroleum Coke (Petcoke)

- The production of pet coke continues to climb
 - new production planned for Venezuelan area.
 Venezuela shipping about 2.5M tons per annum.
 - Quality moderately sulfur at 4.0-4.5%, low ash, 1.0% max but typically 0.5%, 4-5% sulfur and 14,000 Btu/lb heat content.
- It is possible to build combustion units fired with 100% petroleum coke using CFB technology
- Limestone used as sorbent for sulfur is abundant in Jamaica

Fuel -Potential Sources

Renewables

Advantages

- Environmentally safe
- Low operating cost
- Can operate as a distributed system, solar energy is abundant
- Fairly good wind resource identified in specific areas
- Reduces the dependence on fossil fuel imports.

Disadvantages

- Reduces the stability of supply
- High Capital Expenditure
- Large land area required about 10 acres per MW for solar pv
- High risk venture due to resource unpredictability
- Low capacity factor
- Inadequate tariff

		Potential	Feasiblity	Greatest
		Output	Studies	Potential for
RIVERS	PARISH	(MW)	Available	Development
Back Rio Grande (BRG	Portland	50.5	Yes	
BRG Upper (Incremental)	Portland	6.0	Yes	
Great River	Hanover/St.James	8.0	Yes	Yes
Laughlands Great River	St. Ann	5.6	Yes	Yes
Rio Cobre	St. Catherine	1.0		
Negro River 2	St. Thomas	0.9		
Negro River 3	St. Thomas	1.0		
Yallahs River	St. Thomas	2.6		
Wild Cane River	St. Thomas	2.5		
Morgans River	Westmoreland	2.3		
Green River		1.4		
Spanish River (Alternative I)	Portland	4.0	Yes	
Spanish River (Alternative II)	Portland	2.6	Yes	
Rio Grande	Portland	3.9		
Dry River	St. Mary	0.8		
Martha Brae River	Trelawny	5.4	Yes	Yes
Total Identified		98.5		
Plants with Greatest Potential for				
Development	19MW			

Critical Factors Affecting Cost of Generation.

- Fuel costs
- Capital Cost
- Generation O&M cost
- Finance Cost, Taxes
- Depreciation Expense
- Profitability Expectations
- Environmental Mitigation Cost

Critical Factors Affecting Generation Addition Decision.

- Timing of power demand
- Type of new plant technology
- Characteristics of existing plants
- Fuel type
- Size of plant
- Location

Plant Cost

			Nominal	Capital	Fixed	Variable
		Capacity	Heat Rate	Cost	O&M	0&M
Technology	Fuel	(kW)	(Btu/kWh)	(US\$/kW)	(\$/kW-	(\$/MWh)
Advance Pulverised Coal	Coal	360,000.00	8,800.00	3,167.00	35.67	4.25
Advance Pulverised Coal						
with CCS	Coal	360,000.00	8,800.00	5,099.00	76.62	4.25
Natural Gas Combine						
Cycle	Gas	360,000.00	7,050.00	978.00	14.39	3.43
Hydroelectric	Hydro	100,000.00	n/a	3,076.00	13.44	-
Onshore Wind	Solar	100,000.00	n/a	2,438.00	13.03	-
Photovoltaic	Solar	7,000.00	n/a	6,050.00	26.04	-

Source: 2010 Department of Energy Infromation Administration

Source: Department of Energy Information Administration-Updated Capital Cost Estimates for Electricity Generation Plants

ENVIRONMENTAL IMPACT

		EMISSIONS						
		SO2	SO2 NOx CO ₂ Particulate					
Technology	Fuel Type	(lb/MMBtu)	(lb/MMBtu)	(lb/MMBtu)	(lb/MMBtu)			
Advanced Pulverized Coal	Coal	0.1	0.06	206.00	6.8			
Advanced Pulverized Coal								
with CCS*	Coal	0.02	0.06	20.60	6.8			
Natural Gas Combine								
Cycle	Natural Gas	0.001	0.0075	117.00	0.0002			

		Emissions per Annum-360MW @ 85% Capacity							
			Fa	actor					
					Particulate				
Technology	Fuel Type	SO2 (tons)	NOx (tons)	CO ₂ (tons)	Matter (tons)				
Advanced Pulverized Coal	Coal	1,407	844	2,899,026	95,696				
Advanced Pulverized Coal									
with CCS*	Coal	281	844	289,903	95,696				
Natural Gas Combine									
Cycle	Natural Gas	9	69	1,077,304	2				

Economic Assumptions For Comparison

Description	Rate
Leverage	70%
Interest Rate	11%
Loan Cost	2%
Loan Term	10 years
Equity Return	16.5%
Insurance Cost(% of Construction Cost	1.1%
Plant Life-LNG, Coal	25, 30

Real Fuel and Tecnology Options for Generation Expansion

Fuels	Price(\$	/Unit)	Heating	Price	Source	
			Value(MMBtu)	(\$/MMBtu)		
LNG	8.50-1	2.50/Mcf	1.034	8.22-12.10	Trinidad, USA,	
					Qatar, Nigeria	
Coal	75	/ton	25	\$3.00	Colombia	
Petcoke	69	/ton	28	\$2.46	Venezuela	
Technology	Capital	Cost	Plant Size	Heat Rate	Fixed O&M	Var.
						UGINI
	(\$/kW)		(Gross-MW)		(\$/kW-yr)	(c/kWh)
CCGT-LNG	\$1	,510	120	6,870	\$12.86	\$2.53
Steam-Coal	\$3	,750	120	10,500	\$29.59	\$5.00
Steam-	\$3	,750	100	10,500	\$29.59	\$5.00
Petcoke						
		Technol	ogy I	mplementati	on	
		CCGT-LN	NG 2	2-3 years		
		Steam-C	oal	5-6 years		
		Steam- F	etcoke 5	5-6 years		

Generation All in Cost base on Jamaica Plant size

	360 MW @	360 MW @		100MW @
	\$8.5/MMBtu	\$12.5/MMBtu	360 MW @	\$69/ton
	LNG	LNG	\$75/ton Coal	Petcoke
- Capacity Charge (\$/MWh)	32.54	32.54	104.53	101.79
- Energy Charge (\$/MWh)	2.61	2.61	5.15	5.15
- Fuel Charge (\$/MWh)	54.95	80.81	31.50	28.98
All in Generation Cost (\$/MWh)	90.10	115.96	141.18	135.92
All in Generation Cost (Usc/kWh)	9.01	11.60	14.12	13.59
Capacity Charge (\$/kW-mo)	22.43	22.43	72.07	70.18

Cost of Transmission, Distribution, Collection etc must be added for overall Electricity Tariff

Generation All In Cost using EIA data

			Coal 650 MW
	LNG 650 MW	Coal 650 MW	with CCS
- Capacity Charge (\$/MWh)	24.15	89.70	146.82
- Energy Charge (\$/MWh)	3.43	4.25	9.05
- Fuel Charge (\$/MWh)	57.95	26.40	26.40
All in Generation Cost (\$/MWh)	85.54	120.35	182.27
All in Generation Cost (Usc/kWh)	8.55	12.04	18.23
Capacity Charge (\$/kW-mo)	16.65	61.84	101.22

Source: Department of Energy Information Administration-Updated Capital Cost Estimates for Electricity Generation Plants

Technology Option Cost

IPPs, Newc 480 MW CC, and existing Old Harbour Cost of Energy Comparison

					Fuel Oil
					MSDiesel
					with fuel
	Old Harbour	LNG CCGT	ADO CCGT	LNG MSDiesel	abatement
Capacity (MW)	194	360	360	360	360
Capacity Price US\$/kW/Mth	6.30	24.79	24.79	21.53	29.41
Fixed O&M /kW-mth	2.06	4.44	4.44	3.38	3.38
Total Fixed Cost \$/kW/Mth	8.36	29.23	29.23	24.91	32.79
Fixed Charge(US\$/kWh)	0.02	0.0435	0.0435	0.0371	0.049
Variable O&M US\$/kWh	0.005	0.0022	0.0022	0.0163	0.016
Fuel Cost US \$/kWh	0.214	0.058	0.178	0.063	0.123
Total Energy Cost (C/kWh)	23.50	10.36	22.38	11.66	18.80
Fuel Price \$/bbl	103.35		146.99		103.50
Base Fuel Cost US\$/MMBTU*	16.67	8.50	25.13	8.50	16.67

Plant Location

Renewable Options Ana	lysis			
Levelized Cost of Renewable	e Options			
Assumptions				
Debt	70.00%			
Equity	30.00%			
Lending Rate	11.00%			
Retyurn on Equity	16.50%			
Weighted Avg. Cost of Capital	12.65%			
Discount Rate	12.00%			
Period Hours	8760			
Technology		Wind	Hydro	PV Solar
Plant Life Time	Years	30	30	30
Capacity	MW	1.0	6.3	1.0
Plant Capital Cost	\$/ kW	3200	5247	3000
Plant Total Cost	K\$	3,200.0	33,056.1	3,000.0
WACC	%	12.65%	12.65%	12.65%
Annual Capital Cost	K\$	416	4,302	390
Plant Capacity Factor	%	30.00%	48.00%	20.00%
Available Energy	MWh	2,628	26,490	1,752
Capacity Cost/ Kwh	\$/KWh	0.16	0.16	0.22
Fixed O&M Rate(%of Capital Cost/ yr	\$/ Yr	0.30%	0.50%	0.05%
Fixed O&M Cost	K\$	9.60	165.28	1.50
Fixed O&M	\$/KWh	0.0037	0.0062	0.0009
Variable O&M Cost	K\$	2.63	185.43	1.75
Variable O&M	\$/KWh	0.001	0.007	0.001
Total Production Cost	K\$	428.71	4653.03	393.71
Total Energy Production Cost	\$/KWh	0.163	0.176	0.225
Renewable Levelized Energy Tariff	c/KWh	16.31	17.57	22.47
OUP Renowable Energy Tariff	o/k/Mb	10.12	10.12	10.12

Renewable Energy Projects

At current costs :Tariff (c/kWh): Wind 16.31, Hydro 17.57, Solar PV 22.47

- The OUR renewable Tariff of US\$0.102/kWh is uneconomic and will hinder renewable projects development
- OUR tariff needs to be modified to reflect the reality of the system marginal cost.
- Solar PV capital cost must be reduced to around \$2220/kW to compete with wind and hydro projects
- Renewables will not provide firm power due to variation of out put due to intermittency of source.
- 1MWh of renewable generation will displace approximately 2.4 bbl of imported fuel
- Renewable will have positive environmental impact 1 MWh of renewable energy will displace 1500 lbs of Carbon Dioxide from fossil fuel.

Expansion Scenarios

We have considered five (5) scenarios. These include:

- LNG only scenario where all new plants will burn LNG
- 2. LNG, Petcoke Coal scenario a mixed fuel
- 3. LNG, Petcoke scenario a mix-fuel
- 4. A Coal, Petcoke scenario
- 5. Continue as existing ("Do Nothing")

The Recommended Expansion Plan

Year	Size	Technology	Fuel Type	Site
2015-2016	3x 120 MW	CCGT	LNG	Old Harbour
2016-2017	Convert JEP 124 MW & 65MW 6.3MW 15MW	Medium Speed Diesel Hydro Wind	LNG	Old Harbour West Kingston, Maggotty Munro
2018	1x120MW	CCGT	LNG	Hunts Bay
2021	1x 120MW	CCGT	LNG	Bogue
2024	1x 120MW	CCGT	LNG	TBD

Required Investment Plan

Phase One (US\$'000)							
Capacity MW	2013	2014	2015	2016	2017	2018	
360MW	43,344	226,992	250,441	82,500			
120MW				76,951	82,160	39,695	
Total	43,344	226,992	250,441	159,451	82,160	39,695	

Phase Two (US\$'000)							
Capacity MW	2019	2020	2021	2022	2023	2024	
120MW	76,951	82,160	39,695				
120MW				76,951	82,160	39,695	
Total	76,951	82,160	39,695	76,951	82,160	39,695	
Grand Tota	I Phase 1 &	. 2				1,199,495	

Required Investment (LNG, Petcoke)

Phase One (US\$'000)							
Capacity MW	2013	2014	2015	2016	2017	2018	
360MW	43,344	226,992	250,441	82,500			
120MW				76,951	82,160	39,695	
Total	43,344	226,992	250,441	159,451	82,160	39,695	

Phase Two (US\$'000)							
Capacity MW	2015	2016	2017	2018	2019	2020	
120MW	84,917	88,716	97,446	109,725			
120MW				76,951	82,160	39,695	
Total	84,917	88,716	97,446	186,676	82,160	39,695	
Grand Tota	I Phase 1 &	. 2				1,381,693	

Required Investment (LNG, Petcoke, Coal)

Phase One (US\$'000)							
Capacity MW	2013	2014	2015	2016	2017	2018	
360MW	43,344	226,992	250,441	82,500			
120MW				76,951	82,160	39,695	
Total	43,344	226,992	250,441	159,451	82,160	39,695	

Phase Two (US\$'000)							
Capacity MW	2015	2016	2017	2018	2019	2020	
120MW	84,917	88,716	97,446	109,725			
120MW			101,901	106,543	116,935	131,670	
Total	84,917	88,716	199,347	216,268	116,935	131,670	
Grand Tota	I Phase 1 &	. 2				1,639,936	

Fuel Charge/kWh-Fuel Options

Fuel Cost Savings

Fuel Charge/kWh-Fuel Options

Fuel Cost Savings

Fuel Savings

5 - Do Nothing Scenario

- Continue to operate existing Steam Units and Gas Turbines on HFO and ADO.
- Maintain engines with higher O&M expenditure. No new equipment in mix beyond JEP barges
- No change to fuel mix with HFO and ADO
- JEP 65MW in late 2012
- Renewables Munro 15MW and Maggotty 6.3MW in 2014

	2011	2012	2014	2016
System Heat Rate (kJ/kWh)	10,131	10,016	9,600	10,002
Fuel Cost (c/kWh)	18.70	19.24	19.25	20.02

RESERVE MARGINS

Fuel Diversification Creates Benefits

Key Take-away Points

- Investments in new plants will be required to meet demand and to replace units that are currently old and inefficient.
- The solution that will suit all stake holders requires both a reduction in fuel cost as well as production efficiency
 - Enables the company to provide lower cost to customers while benefiting from efficiency gains, low environment impact
- It is widely accepted that Jamaica needs to limit its dependency on fuel oil by diversifying its energy source
 - Natural Gas is a viable option relative to fuel oil.
 - Coal & Petcoke are competing alternatives but present environmental challenges

Key Take-away Points Cont'd

- Apart from fuel there are other factors which comprise the generation cost
- The "All In Generation Cost" for LNG is less than that of Coal and Petcoke.
- The environmental impact of Natural Gas is significantly less than that of Coal.
- The cost to mitigate against the environmental impact of coal will increase the generation cost by approximately 50%.
- Fuel diversification creates long term benefits.
- Firm decisions are required from policy makers for projects to go forward